How do we tell which inclusive teaching strategies will benefit the whole class?

Tom Coverdale Inclusive teaching working group RMIT University

How do you know a strategy works?

- 1. Many different and often conflicting published views
- 2. Qualitative research useful, but doesn't answer the question
- 3. Need to measure impact of a strategy on achievement (grades)

This session

- 1. The two main approaches to inclusive teaching.
- 2. Meta-analysis, a way of measuring the success of educational strategies.
- 3. How meta-analysis can enhance inclusion and improve grades and course satisfaction across the whole class.

What is inclusive teaching?

Trying to accommodate visible and invisible differences within the class.

Many groups to include

Some of the differences we need to accommodate:

- religious practices
- cultural and linguistic diversity
- ESL
- indigenous culture
- other cultural differences
- health conditions
- medical conditions
- disabilities
- age, gender, sexuality
- young people who left school early
- older learners returning to study
- single parents returning to study
- part time students
- refugees
- survivors of trauma

(Training Design 2007)

Two approaches to inclusive teaching

- Special-needs-based adjustments (the prevalent method)
- Universal design.

First approach: special needs-based adjustments

Figure 4.1: Proportion of UK-domiciled, full-time undergraduate students by disability status

Source: HESA Students and Qualifiers Data Tables

Source: Department for Innovation, Universities and Skills 2009

Figure 5.3: Type of disability declared by first year UK domiciled full-time undergraduates

Source: Department for Innovation, Universities and Skills 2009

Second approach: universal design

But how do we know it would help the rest of the class?

- 1. Some inclusive teaching strategies benefit whole class; others don't.
- 2. Meta-analyses useful for showing which is which.

Educational intervention	Effect size
Argument mapping for critical thinking (HEd)	0.78 (Alvarez 2007; n=7)
Embedded meta-cognitive study skills (HEd)	0.77 (Hattie, Biggs & Purdie 1996; n=108)
Reciprocal teaching	0.74 (Hattie 2009; n=38)
Enhanced feedback	0.73 (Hattie 2009; 1287)
Meta-cognitive strategies	0.69 (Hattie 2009; n=63)
Teaching study skills	0.59 (Hattie 2009; n=668)
Cooperative v individualistic learning	0.59 (Hattie 2009; n=774)
Note-taking	0.59 (Hattie 2009; n=46)
Mastery learning	0.58 (Hattie 2009; n=377)
Concept mapping	0.57 (Hattie 2009; n=287)
Peer tutoring	0.55 (Hattie 2009; n=767)
Average effect ('the bar')	0.40 (Hattie 2009; n=52 637)
Computer-based instruction (HEd)	0.28 (Schmid et al 2009; n=231)
Individualised instruction	0.23 (Hattie 2009; n=600)

Table 1: Data from educational meta-analyses; n=number of studies

Making universal design high-yield

Example:

- 1. Many students with learning disabilities benefit from being taught concept mapping.
- 2. Students in general also benefit from this.
- 3. So teach everyone concept mapping (and argument mapping), and offer the software to everyone.

We need to use both approaches

- Must still make special-needs-based adjustments to ensure full access, e.g. note-takers, extra time on exams.
- Universal design not 'difference blind', not 'one-size-fits all'
- Universal design complements and enhances 'adjustments' approach.

High-yield UD appeals to teachers' self-interest

- Special-needs-based adjustments tend to be seen as fair, but also as onerous and time-consuming.
- A high-yield approach to universal design likely to **improve grades** and course satisfaction.
- And that recruits the **self-interest** of teachers.

Summary

- 1. Need to do more universal design, to enhance the prevalent adjustments-based approach
- 2. Universal design well-supported by educational research on highyield strategies.
- 3. Meta-analysis indicates strategies to prioritise.

References

- Alvarez Ortiz, CM 2007, 'Does philosophy improve critical thinking skills?', Masters thesis, Melbourne University.
- Department for Innovation, Universities and Skills 2009, *Disabled Students and Higher Education: Higher Educational Analysis,* Department for Innovation, Universities and Skills (UK), viewed 22 September 2009.
- Hattie, J 2009, Visible learning: a synthesis of over 800 meta-analyses relating to achievement, Routledge, New York.
- Hattie, J, Biggs, J & Purdie, N 1996, 'Effects of learning skills intervention on student learning: a metaanalysis', *International Journal of Educational Research*, 11, 187–212.
- Schmid, RF, Bernard, RM, Borokhovski, E, Tamim, R, Abrami, PC, Wade, CA, Surkes, MA, Lowerison, G 2009, 'Technology's effect on achievement in higher education: a Stage I metaanalysis of classroom applications', *Journal of computing in higher education*, vol 21, pp 95-109, viewed 11 November 2009, ERIC database.
- Training Design, 2007, 'One and all: a facilitator's guide to assist in the delivery of TAAENV402A foster and promote an inclusive learning culture', Wodonga Institute of TAFE.

International students in Victoria

What is an 'effect size'?

A **meta-analysis** looks at the same variable across numerous studies and comes up with an effect size, which is an average effect across all the studies (e.g. effect of note-taking on final grades).

An effect size around 1.0 represents a huge positive effect on student achievement

'When implementing a new program, an effect-size of 1.0 would mean that approximately 95% of outcomes positively enhance achievement, or average students receiving that treatment would exceed 84% of students not receiving that treatment.' (Hattie 1992)

An effect size of 0.3 or less is slight, in education

'An effect-size of 0.31 would not [...] be perceptible to the naked observational eye, and would be approximately equivalent to the difference between the height of a 5'11" and a 6'0" person.' (Hattie 1992)

Différence hetween mind much + concepte map (PTO):

FIGURE 2. Mind Map of the Capital Budgeting Techniques

10

more causal connections

Annexure B: A student constructed concept map for the Equity Funding case outlined in Annexure A

21

19

Summary

Fairness, policy and/or law require us to make adjustments to our teaching (including assessment) to prevent certain individuals or groups being marginalised.

- But many of the adjustments we make to include minorities would also benefit the rest of the class.
- Using a multi-sensory approach is important in universal design for learning
- Another important principle of UDL is to teach in a way that is *simple* and transparent
- UDL strategies tend to be supported by meta-analyses and reviews of research which show that certain teaching strategies produce higher 'yields' in terms of student achievement (e.g. grades) and satisfaction (e.g. course experience survey responses).

References

Department for Innovation, Universities and Skills 2009, *Disabled Students and Higher Education: Higher Educational Analysis,* Department for Innovation, Universities and Skills (UK), viewed 22 September 2009.

- Little, F.G. 1975, *Faces on the campus: a psycho-social study*, Carlton, Vic: Melbourne University Press
- Hattie, J 2009, Visible learning: a synthesis of over 800 meta-analyses relating to achievement, Routledge, New York

Diversity, access, equity, inclusivity

Which groups should we make an effort to include?

e.g. age, disability, students with ESL...

High challenge	High challenge
Low support	High support
(sink or swim: high dropout rate, lawsuits)	(enriching: happy students, good graduates)
Low challenge	Low challenge
Low support	High support
(neglecting: weak graduates)	(indulging)

 Table 1: adapted from Little (1975)

We need to use both approaches

Ethics and/or law mandate that we continue to make adjustments to ensure full access, e.g. note-takers, extra time on exams, teaching students to use concept-mapping software.

But some adjustments, such as teaching students to use conceptmapping software, could be offered to the whole class.