

MONASH INFORMATION TECHNOLOGY

# new and under-used strategies for accessible graphics in higher education

Leona Holloway leona.holloway@monash.edu





# Outline



1. Background: OLT Project "Improving vision impaired students' access to graphics in higher education"

- 2. Practical strategies for accessible graphics:
  - a) identifying which graphics need to be made accessible
  - b) choosing the most suitable technique for access
  - c) sharing expertise groups and resources

## Our team



- Led by Monash and Deakin Universities
- Team members: Kim Marriot, Matt Butler, Leona Holloway & Cagatay Goncu (Monash IT), Merrin McCracken (Deakin Disability Services) & Tom Perry (Monash Disability Services)
- Expert reference group: University of Adelaide, Vision Australia, Victorian Department of Education, DIAGRAM Center (USA), consumer representative
- External evaluator: Matt Brett (La Trobe)

# Accessible graphics in HE



- OLT Project: "Improving vision impaired students' access to graphics in higher education"
- Stage 1: Information gathering
  - National survey of 71 VI students
  - Interviews with 42 Students, academics, disability services staff and accessible format providers



Vision impaired students lack access to graphics:

- 84% skip graphic materials of potential value because it is inaccessible
- 94% could benefit from improved graphics
- 50% avoided a potential area of study or career due to concerns about access
- Higher participation in Society and Culture (43% vs 24%)
- Lower participation in STEM (11% vs 24%)

# Accessible graphics project continued



Stage 2: Pilot studies

 Working with 8 students and their disability advisors, lecturers, tutors and accessible formats providers

Stage 3: Recommendations

• Workshop with participants and contributors to the project



# **Principles** for improving VI access to graphics in HE

http://accessiblegraphics.org/research/principles/

# 1. Communication & shared responsibilities



1. Support for the learning requirements of vision impaired students requires **communication** and **shared responsibilities** between students, academics, support staff and specialist services.

- Roles and responsibilities must be understood and agreed to by all stakeholders.
- Foster effective and timely formal (and informal) communication processes between all stakeholders.
- Formal mechanisms are required to capture and distribute feedback regarding disability services.



# 2. Inclusive teaching strategies



- 2. Many of the learning requirements of vision impaired students can be addressed through **inclusive teaching strategies**.
- Improve disability awareness among academics.
- Encourage use of teaching strategies that improve accessibility and learning outcomes for *all* students.

# 3. Specific learning requirements



3. Vision impaired students have **specific learning requirements** for which higher education institutions are obligated to provide appropriate services and support.

- Students with disabilities require specialised support for transition to higher education.
- Vision impaired students require resources and skills to access materials independently. Universities should assist students in acquiring these.



# 4. Strategies for accessible graphics



4. Vision impaired students require further specialized support, including the use of **appropriate strategies for accessible graphics**.

- Consideration is given to the multiple roles that graphics play in the overall learning experience.
- Application of appropriate technologies and practices to make graphics accessible, as best suited to the individual student, content and context.
- Use national networks and partnerships to share expertise, best practice and resources and keep up-todate with changes in technology and the teaching environment.

# Applying the principles



- Suggested strategies accompany the principles
- <u>http://accessiblegraphics.org/research/he/principles/</u>
- Workshops available to explore how to apply the strategies at your institution



Identifying which diagrams need to be made accessible

# Identifying which diagrams need to be made accessible – the problem



- Everything?
- Student request?

"I don't know what to ask for"

"It takes a lot to be able to stand up and say 'I've got this condition and I can't do it'"

Lecturer?

"I wouldn't want to go through and identify which graphics I think are needed ahead of time because ... I could spend a lot of time worrying about something that [the blind student is] perfectly able to access already."

Tutor?

# Identifying which diagrams need to States and the some ideas



- Recognise the importance of ALL graphics
- Student needs minimum level of information about diagrams so they can make a decision about which they need to access more fully
- Lecturer can identify which diagrams will be needed for assessment. These should provided in same format that will be used for the exam.



# Choosing a format

http://accessiblegraphics.org/formats/choosing/

# Enlargement

- Most common method for accessing graphics for students with low vision in HE
- Disadvantages:
  - Original needs to be good quality (high resolution and high contrast)
  - Difficult to get an overview
  - Can cause headaches and fatigue





# **Verbal descriptions**



- Most common method for accessing graphics for blind students in HE
- Least preferred method for accessing graphics
  - Lecturers don't have time to give full descriptions
  - Students, family and friends are unable to give adequate descriptions
  - Does not foster or allow for independence



Enlargement and verbal descriptions are good starting points, but may need to be supplemented with other methods.

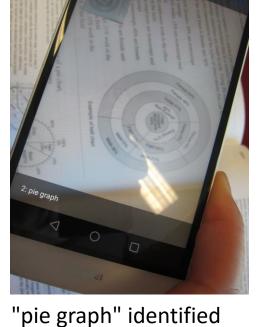
# Written descriptions



#### Advantages:

- allows for more independent study
- useful as accompaniment to other formats (enlargement or tactile graphics) to provide overview and assist with navigation
- can also be helpful for other students in the class

#### Overcoming difficulties:

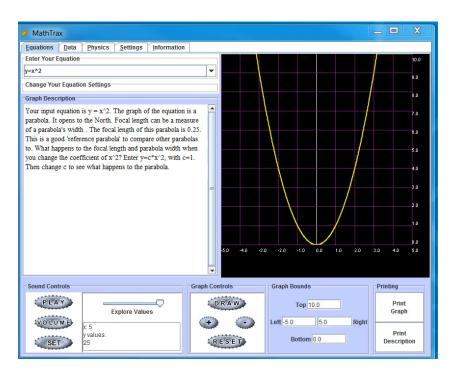

- Subject matter knowledge needed ask a tutor or follow an example written by the lecturer
- Links to training resources given at <a href="http://accessiblegraphics.org/formats/descriptions/">http://accessiblegraphics.org/formats/descriptions/</a>



#### 20

# Image description apps

- Take a photograph and receive a brief description
- Advantages:
  - Instant and independent access
  - Gives an indication of type of diagram and whether further access is required
- Examples
  - TapTapSee <u>http://taptapseeapp.com/</u>
  - IRIS for maths and science content. Call for beta testers at <u>www.grapheel.com</u>




using TapTapSee



### Sonification

- Data or equation converted to audio tones. Works best for line graphs.
- Advantages:
  - Independent and instant access
  - Does not require tactile literacy
- e.g. <u>MathTrax</u> by NASA



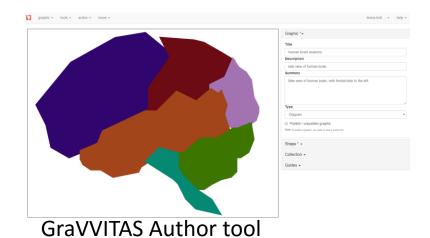


# **Statistics**



#### • R

- The most accessible statistics package for navigation and use
- BrailleR package provides descriptions of graphs and ability to automatically output graphics as tactile graphics
- Information and Blind R Users Group (BlindRUG) email listserv available at

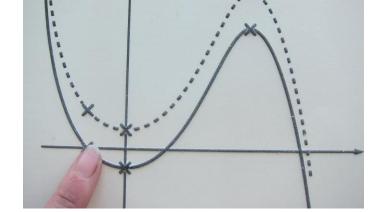

https://www.nfbnet.org/mailman/listinfo/blindrug\_nfbnet.org

- SAS Graphics Accelerator
  - Free add-in for SAS University Edition
  - Gives description, sonification and data
  - Works for all graphs created using SAS

# GraVVITAS



- Author tool to create simple graphics with associated audio tones and labels <u>http://www.raisedpixels.com/graauthor/#</u>
- Reader app by Raised Pixels from the App store
- Best suited to:
  - Diagrams with spatial component
  - Diagrams with lengthy labels
  - Quick in-house production
  - Students who do not want to use tactile graphics

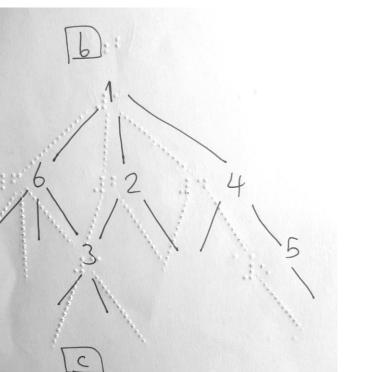



Available for (free) use but still in development. Please contact <u>cagatay.goncu@monash.edu</u>

#### 24

# **Tactile graphics**

- Widely recognised as the ideal format for graphics with spatial information
  - Only required for around 5-10% of graphics
- Under-used
  - Only 30% of tactile literate students receive tactile graphics at university
  - Concern regarding tactual literacy
  - Concern regarding cost and time for production




tactile graphic



# Tactile graphics – overcoming barriers

- If a tactile graphic will be used in the exam, give exposure to similar tactile graphics during semester
- Accompany with written or verbal description giving type of diagram and direction for reading to aid with navigation; and with labels for non-braille readers
- Quick handmade tactile graphics



handmade tactile graphic



# **3D models**



#### Advantages:

- More intuitive for blind students
- Appealing and inclusive for all students
- Becoming more readily available as pre-existing objects, open source models for 3D printing, or custom-designed for 3D printing



Population density of USA, represented in 3D

#### Resources:

- <u>http://accessiblegraphics.org/formats/3d/</u>
- Upcoming workshop at <u>2017 Round Table Conference</u> in Perth (May)

# Summing up



- Diagrams and graphics are an important component of access to learning and environment in higher education
- Provision of access to graphics does not need to be difficult
  - Match the strategy to the student and situation
  - Join communities and communicate to share expertise
  - Best practice is within reach
- Help students reach their true potential

"Statistics was a very challenging unit for me and there were several hurdles along the way. I couldn't have achieved such a high result without the help from each of you" – blind student to disability advisors, academics, accessible formats providers and the project team

# For more information



- Butler, M., Holloway, L. M., Marriott, K. & Goncu, C. (2016). Understanding the graphical challenges faced by vision-impaired students in Australian universities, Higher Education Research & Development
- http://accessiblegraphics.org/he
- Contact us:
  - at <u>Leona.Holloway@monash.edu</u>, <u>Kim.Marriott@monash.edu</u> and <u>Matthew.Butler@monash.edu</u>
  - Available for local workshops,
    e.g. how to apply the principles
    for your circumstances
  - Interactive 3D campus models



3D map of Monash Caulfield with audio touch points